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Abstract 
In order to represent real-world images with a computer, a program has to relate 

three-dimensional images on a two-dimensional monitor screen.  Several ways of doing 
this exist with varying degrees of realism.  One of the most successful methods can be 
grouped in a “screen-to-world method” of viewing, which is also known as “ray-tracing.”  
This computer graphics technology simulates light rays within a 3D environment.  Since 
light rays have predictable physical properties, the ray-tracing algorithm can attempt to 
calculate the exact coloring of each ray/object intersection at any given pixel.  Advanced 
levels of ray tracing allow light rays to bounce from object to object, mimicking what 
they do in real life. 

“Local illumination” represents the basic form of ray tracing. It only takes into 
account the relationship between light sources and a single object, but does not consider 
the effects that result from the presence of multiple objects. For instance, a light source 
can be intersected by another surface and therefore be obscured to any point behind that 
surface. Similarly, light can be contributed not by a light source, but by a reflection of 
light from some other object.  The local illumination model does not visually show this 
reflection of light. Therefore, special techniques have to be used to represent these 
effects. In real life there are often multiple sources of light and multiple reflecting objects 
that interact with each other in many ways. “Global illumination,” the more advanced 
form of ray tracing, adds to the local model by reflecting light from surrounding surfaces 
to the object. A global illumination model is more comprehensive, more physically 
correct, and it produces more realistic images.  

Ray tracing is an essential subject when it comes to computer graphics.  It 
combines issues of efficiency and realism, thus finding a favorable balance of the time 
and effort involved to make realistic three dimensional images. In the process of 
researching the many different ways of implementing a ray tracer, the study began with 
local illumination and graduated to global illumination, using some pre-established 
techniques and the development of new techniques. 

 
Ray Tracing Basics 
 A basic model shown in Figure 1 will shoot one ray per pixel.  If an image is 
800x600 pixels, then when the ray tracing is complete, 480,000 rays will have been shot.  
Each will begin at the viewer and end at its closest intersection with an object in the 
scene.  The viewer’s location is defined with the other objects of the scene in an input 
file.  An illumination model will be applied to figure out how much light is falling on that 
point and what color will be produced.  An illumination model is an equation used to 



calculate the intensity of light that we should see at a given point on the surface of an 
object [2]. 

Objects within a scene have properties describing its 
color, if it’s reflective (mirror-like) or refractive 
(glass-like) and its location within the scene.  
Objects can be spheres, triangles (polygons), rings, 
cylinders, etc [5].  Any one of these shapes could be 
a light as well, known as area light sources when the 
whole surface of the object emits light.  For now, we 
will use point light sources, light coming from a 
single point in the scene, for our illumination model. 
 
 
Figure 1 :: Basic Ray Tracing Scenario 
 

 
Calculating the Closest Intersection 
 Parametric equations for a line in a 3 dimensional space are used for calculating 
the closest intersection with an object from the eye (viewer)[4].  These equations are 
shown next to Figure 2.  The goal is to find the smallest t value.  The smallest t value 
will give the closest intersection to the Viewer as shown in Figure 2. 
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Figure 2 :: Intersections along a ray, where t=32.3 is the closest one.             
 
Point0 (x0, y0, z0) is the location of the Viewer at the origin for the ray.  Point1 (x1, 

y1,  z1) is a point on the image plane.  Point (x, y, z) is any point on the line defined by P0 
and P1.  Notice that (x1 – x0) is the x component of a vector, same for y and z.  So a ray 
can be represented by vector: 〈 (x1 – x0), (y1 – y0), (z1 – z0) 〉 .   
 
Applying Illumination 
 Now that the calculation of what the viewer can see at a particular pixel is found, 
the illumination model is applied.  The local illumination model is used figure out what 
color the pixel will be.   

SpecularDiffusePixelcolor +=  
 A diffused material is a dull material, like chalk.  At the point of intersection, a 
vector is made from the intersection to a light.  This forms the light vector L.  N is the 
normal of the surface at that intersection.  L and N are shown in Figure 3.  The normal is 
perpendicular to the surface. The formula to calculate the diffused component of the local 
illumination model is as follows [2]: 



θcos** diffusediffuse ColorKDiffuse =  
Kdiffuse and Colordiffuse are pre-defined inputs of the program describing a particular 

object’s diffused properties.  The angle between L and N is θ, which is calculated and 
will change according to the light’s location.  This will give the object a shaded look 
dependent on the light. 
 
 
 
 
 
 
 
 
 
 

Figure 3 :: Diffused component, L points at a light source and N is normal to the surface. 
 

Specular color is viewer dependent.  The closer the reflection vector R is pointing 
towards the eye, the brighter the pixel will get.  Simply put, specular color will brighten a 
point more if the light reflects back into the eye.  The formula to calculate the specular 
component of the local illumination model is as follows [2]: 

φshiny
specularspecular ColorKSpecular cos**=  

  Kspecular, Colorspecular, and shiny are input describing the object.  The shiny 
exponent affects the specular spot on the object, shown in Figure 5.  The higher shiny is, 
the more concentrated the spot becomes.  φ is the angle between the Normal vector, N, 
and the Eye vector, shown if Figure 4.       
  
 
 

  
 
 
 
 
 
 
 
 
Figure 4(left) ::  Specular component, R is the reflection of L 
Figure 5(right) :: Specular color on a sphere, the shiny exponent will effect the area of the 
Specular “spot”. 
 
Pixels will be in a “Red-Green-Blue” color space known as (R, G, B) values.  

Each RGB component will have range [0.0 – 1.0].  White would be (1,1,1) and Black 
(0,0,0).  The illumination model formula becomes [2]: 
 

 



RRRcolor SpecularDiffusedPixel +=_  

GGGcolor SpecularDiffusedPixel +=_  

BBBcolor SpecularDiffusedPixel +=_  
  
Smoothing the Image 
 Antialiasing is a technique used for the smoothing of an image.  It takes sharp, 
jagged edges of an image and blends it with colors around the edge making it smooth [1].  
For instance, a black surface intersecting a white surface, at those points of intersection 
the colors will blend and make a grayish color.   

To apply this technique to ray tracing is straightforward.  Take a pixel and divide 
it into sub-pixels, shown in Figure 6, and shoot the sub-pixels with rays.  Add all the sub-
colors up and divide that by the number of sub-pixels.  This gives you an average color 
for that whole pixel.  This works because the all the sub-rays shot will all not hit the same 
place, some will hit the black surface and some will hit the white surface.  Then 
averaging the colors will give you a gray. 
 
 
 
 
 
 
 
 
 
Figure. 6 :: The subdivision of a pixel to make sub-pixels.  Calculate the color for each sub-pixel and then 
averaging them to get a color for the whole pixel. 
     
Accelerated Ray Tracing 
 Ray tracing is very time consuming algorithm.  The majority of the time goes to 
finding the intersection of a ray [1].  To find this intersection you have to test a ray with 
every object in the scene, and then chose the closest intersection.  Therefore, if there are 
86K objects in a scene and the image is 800x600 (480K rays), 41.28 billion intersection 
calculations are made. 
 A way of speeding up this process is to use a 3-D grid to encompass all the 
objects in a scene.  Now, instead of testing all 86k objects per ray, only test objects that 
are in the sub-boxes for which the ray passes through, as shown in Figure 7.  Only 
objects in boxes 8,9,10,11,12 need to be test for intersection. 

 
      
 
 
 
 
Figure 7:: 2-D representation 
of 3-D grid structure. 
  

 



Another way of accelerating the rendering process is to take advantage of a 
computer that has multiple processors.  With this capability, an image could be split into 
N sub-image, where N is the number of processors.  Each processor having one sub-
image to work on, making the run-time N times faster. 
 
Interpolation of Normals 

A normal is perpendicular to the surface at a particular point on that surface [4].  
If a triangle has just one normal for all the points on the triangle then that triangle will be 
perfectly flat.  With one normal per triangle an object made up of triangles will become 
patched, as seen with the teapot on the left in Figure 8.  With interpolation, the goal is to 
have a slightly different normal for every point on the triangle making the object curved, 
as seen with the teapot on the right in Figure 8 [2]. 
 

 
Figure 8 :: Left teapot is without interpolation; the right teapot was rendered with interpolation. 
 
   This new normal, N, will be calculated from three other normals, Na, Nb, and 
Nc, representing the normals of the three points of a triangle, A, B, and C respectively, 
shown in Figure 9. The three normals of the triangle are pre-defined inputs to the ray 
tracer.  These normals will have been calculated from a different program.  They are 
based upon the averaging of surrounding triangles and their normals.  N is a linear 
combination of the vectors, Na, Nb, and Nc. 

cba NNNN *** σβα ++=  
The location of point P and its distances from each normal determines which one; 

Na, Nb, or Nc is weighted more than the rest.  In Figure 9, P is closer to B, therefore β  
will have a greater value than α and σ. 

 
 
 
 
 
 
 
 
 

Figure 9 :: A triangle with three normals used to 
calculate N, the normal for point P. 
 



 
Global Illumination 
 Global Illumination will give a more realistic image.  It will take into account all 
light, direct and indirect, to form a better lighting model on a surface.  With local 
illumination, one ray is shot to every light to calculate how much light will be falling on 
that surface.  With global illumination, once the intersection is calculated many rays are 
shot out in different directions to produce the light falling on that point.  To produce the 
most realistic image possible, all directions of light would have to be tested.  This is 
impossible because there are infinite directions of light falling on any particular point.  
Instead, sample rays are shot to produce a lighting model, shown in Figure 11.  Figure 
10 shows that the more samples that have been taken, the better the image will come out 
[4]. 

 
 Figure 10 ::  Left image: 100 sample rays per intersection. Middle image: 1000 sample rays per 
intersection.  Right image: 3500 sample rays per intersection 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    

Figure 11  :: Basic Global Illumination Scenario 
 



A sample ray can bounce randomly off objects until it reaches a light.  If it never 
reaches a light in the maximum allowed bounces, then it is thrown out of the final 
calculation of pixel color.  If a sample hits a light directly, the full intensity of light goes 
into the calculation.  If it doesn’t hit the light directly, after every bounce the light 
intensity is decreased by a factor of the diffused component of the object it is bouncing 
from.  In global illumination the sample ray takes the place of the Light vector, L, in the 
pixel color calculations, seen in Figures 3 and 4.  The pixel color formula is now 
changed to the following. 
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N will begin equaling the number of samples, but every time gl( ) returns 0 it will 
be subtracted by 1.  The gl( ) function will return 0 if the sample ray never hits a light.  
This throws out all noncontributing sample rays.  Also, gl( ) is a recursive function.  It 
will recurse till the maximum number of bounces has been reached, or it has hit a light.  
Once gl( ) has hit a light, it returns the light’s intensity.  That light intensity decreases 
with every bounce it took to get to the light.  So, the more bounces the ray takes to get to 
the light, the less the light’s intensity will factor into the final calculation of the pixel 
color.  This Pseudocode below show this being done.  
 
Pseudocode: Global Illumination 

color_pixel(Vector ray_from_eye) 
  intersection = find_intersection(ray_from_eye) 
  N=#samples 
  for(i=0;i<#samples; ++i) 
   sample_ray = generate_random_ray(intersection) 

current_color = diffuse(intersection)+ 
    specular(intersection) 

   factor = gl(sample_ray) 
    
   if(factor == 0) 
    N – 1 
    goto next sample 
   end_if 
   sum_of_colors += current_color * factor 
  end_for 
  pixel_color = sum_of_colors / N 
  return pixel_color 
 end_color_pixel 
 
 gl(Vector sample_ray)  //recursive function 
  if(Max Bounces Reached) 
   return 0 
  end_if 
  intersection = find_intersection(sample_ray) 
  if(intersection is a light) 
   return light’s intensity 
  end_if   

sample_ray = generate_random_ray(intersection) 
  factor = gl(sample_ray) 
  return diffuse(intersection) * factor 

end_gl 



 
Generating Random Sample Rays 
 Generating sample rays is an important part of the global illumination algorithm.  
Sample rays will produce the light; so bad sample rays will render bad lighting.  If a 
sample ray never hits a light it is thrown out of the calculation. We want all rays to have a 
“chance” of hitting the light.  Sample rays need to point away from the surface they are 
coming from.  A sample ray needs to have an angle with the normal between 0 and 90 
degrees, and should be able to reach 360 degrees around the normal.  This depicts a 
hemisphere, with the surface’s normal going straight through the top “North Pole” of it, 
as in Figure 12[1].   
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12 ::  Hemisphere for sample rays 
 
  
 
 
 
 
 

The spherical coordinates system can be use to make random sample rays [1], 
shown in Figure 13.  Point P on the hemisphere needs to be randomized.  This can be 
accomplished by randomizing the angles φ and θ. Radius r can be kept constant at 1.  P 
needs to converted to it’s x, y, and z components with the following formulas. 

φ
θφ
θφ

cos
sinsin
cossin

rz
ry
rx

=
=
=

 

 P is oriented about the Origin.  So, P needs to be transformed so it is oriented with 
the surface, and its normal.  To do this, an orthonormal basis is made with the surface’s 
normal.  An orthonormal basis (ONB) is a set of vectors that are mutually perpendicular, 
and are unit length [1].  The most famous ONB is the xyz coordinate system, the natural 
basis.  ONBs make converting to and from different coordinate systems uncomplicated.  
Once an orthonormal basis is made with the surface’s normal, P can be transformed into 
P’.   P’ is now oriented with the new basis.  To finish this process off, a vector is made 

Figure 13 ::  P is a point on the hemisphere.  
r is the radius of the hemisphere.  
θ  has a range of [0, 90] degrees.   
φ  has a range of [0, 360] degrees 



from the intersection point on the surface to P’ and the new sample ray is formed.  The 
new sample ray will be used in place of the light ray in the illumination formula.   
 
 
Conclusion 
 The study of ray tracing can lead to interesting things in the field of computer 
graphics.  Ray tracing is a viable technique of producing two-dimensional images of a 
three dimensional world.  It can be a tool that becomes more and more valued as our 
culture heads deeper into computer generated worlds via games, movies, training 
simulators, or even architectural modeling.  Ray tracing can produce images with varying 
degrees of realism.  With its strong mathematical and physical foundations, ray tracing is 
and will remain a major concept of computer graphics. 
 
 
Gallery  
To see these images in their full size please visit: http://www.unf.edu/~rupj0001/ray/ 
 

A.) One of the first images produce.  The light is coming from the top right, and 
shadows were turned off.  Image took 13min. to render and its size was 
1024x768. 

B.) All most same scene as image A, but with a new cylinder and two light sources 
with shadows turned on.  Also this image has Antialiasing 10rays/pixel.  Image 
took 10hours to render and its size was 1024x768. 

C.)  Two light sources, one inside the cylinder, and one coming from the top left.  
Shadows turned on. Image took 4min. to render and its size was 1024x768. 

D.)  Two light sources coming from the bottom left and the top right.  4 reflective 
sphere all reflecting each other’s colors.  Image took 1min. to render and its size 
was 1024x768 with 5rays/pixel. 

E.)  Same 4 sphere as image D, but now incase in a reflective box.  One gold-colored 
light source in the top right front of the box.  Image took 1min. to render and its 
size was 400x300. 

F.)  The Parthenon is inside of a blue reflective box.  Three light sources, on in the 
back left bottom corner, one in the front left bottom corner and one inside the 
Parthenon.  Image took 3hours to render and its size was 800x600 with 
10rays/pixel. 

G.)  A glass sphere with a blue diffused sphere behind it. Image took 3mins to render 
and its size was 1024x768 with 10rays/pixel. 

H.)  100,000 random spheres to test the 3-D grid acceleration technique.  The image 
about 18mins at 512x512.  Without a 3-D grid it would still be rendering today! 

I.) A Sphereflake, this image took about 5min. to render at 1024x768. 
J.) The Rhinoceros Logo, 86000 triangles.  Image took 30mins on 7 processors at 

1024x768. 
K.)  This image was the goal of the research.  A global illuminated scene at 800x600 

with 3000samples/intersection.  Two area light sources at the ceiling of the room.  
A reflective sphere floats at the left, with two soft shadows under it.  The soft 



shadows are one of the products of the global illumination technique.  Image took 
7hours on 8 processors. 

L.)  A comparison of local illumination vs. global illumination. 
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